Caractéristiques principales
Une étoile est caractérisée par différentes grandeurs :
- La masse
- Le diamètre
- Sa composition Chimique
- Sa magnitude
- Sa température et sa couleur
- Sa vitesse de rotation
- Son champ magnétique
La Masse
La masse est une des caractéristiques les plus importantes d’une étoile. En effet, cette grandeur détermine sa durée de vie ainsi que son comportement pendant son évolution et la fin de sa vie : une étoile massive sera très lumineuse mais sa durée de vie sera réduite.
Les étoiles ont une masse comprise entre environ 0,08 et 300 fois la masse du Soleil, soit (très) près de 2.1030 kilogrammes (2 milliards de milliards de milliards de tonnes). En dessous de la masse minimale, l’échauffement généré par la contraction gravitationnelle est insuffisant pour démarrer le cycle de réactions nucléaires : l’astre ainsi formé est une naine brune. Au-delà de la masse maximale, la force de gravité est insuffisante pour retenir toute la matière de l’étoile une fois les réactions nucléaires entamées. Jusqu'à peu, on pensait que la masse d'une étoile ne pouvait excéder 120 à 150 fois la masse solaire mais la récente découverte d'une étoile ayant une masse 320 fois supérieure à celle du Soleil a rendu cette hypothèse caduque.
Le Diamètre
Comparativement à notre planète (12 756 km de diamètre), les étoiles sont gigantesques : le Soleil a un diamètre d’environ un million et demi de kilomètres et certaines étoiles (comme Antarès ou Bételgeuse) ont un diamètre des centaines de fois supérieur à ce dernier.
Le diamètre d’une étoile n’est pas constant dans le temps : il varie en fonction de son stade d’évolution. Il peut aussi varier régulièrement pour les étoiles variables périodiques (RR Lyrae, Céphéides, Miras, etc.)
Des interféromètres comme celui du VLT de l’ESO au Chili ou CHARA en Californie permettent la mesure directe du diamètre des étoiles les plus proches.
La composition Chimique
La composition chimique de la matière d’une étoile ou d’un gaz dans l’Univers est généralement décrit par trois quantités en nombre de masse : X l’hydrogène, Y l’hélium et Z la métallicité. Ce sont des grandeurs proportionnelles satisfaisant la relation : X + Y + Z = 1.
La métallicité est la quantité (mesurée en nombre, ou généralement par masse) des éléments plus lourds que l’hélium présents dans l’étoile (ou plutôt sa surface). Le Soleil possède une métallicité (notée Z) de 0,02 : 2 % de la masse du Soleil est composée d’éléments qui ne sont ni de l’hydrogène, ni de l’hélium. Pour le Soleil, ce sont principalement du carbone, de l’oxygène, de l’azote et du fer. Bien que cela semble faible, ces deux pourcents sont pourtant très importants pour évaluer l’opacité de la matière de l’étoile, qu'elle soit interne ou dans son atmosphère. Cette opacité contribue à la couleur, à la luminosité et à l’âge de l’étoile.
L’opacité est directement liée à la capacité de l’étoile à produire un vent stellaire
La Magnitude
La magnitude mesure la luminosité d’une étoile ; c’est une échelle logarithmique de son flux radiatif. La magnitude apparente dans un filtre donné (ex. : le visible noté mv), qui dépend de la distance entre l’étoile et l’observateur, se distingue de la magnitude absolue, qui est la magnitude de l’étoile si celle-ci était arbitrairement placée à 10 parsecs de l’observateur. La magnitude absolue est directement liée à la luminosité de l’étoile à condition de tenir compte d’une correction dite bolométrique (on la note BC). L’introduction de l’échelle logarithmique des magnitudes vient du fait que l’œil possède une sensibilité également logarithmique, en première approximation.
La température et couleur
La plupart des étoiles paraissent blanches à l’œil nu, parce que la sensibilité de l’œil est maximale autour du jaune. Mais si nous regardons attentivement, nous pouvons noter que de nombreuses couleurs sont représentées : bleu, jaune, rouge (les étoiles vertes n'existent pas). L’origine de ces couleurs resta longtemps un mystère jusqu’à il y a deux siècles, quand les physiciens eurent suffisamment de compréhension sur la nature de la lumière et les propriétés de la matière aux très hautes températures.
La couleur permet de classifier les étoiles suivant leur type spectral (qui est en rapport avec la température de l’étoile). Les types spectraux vont du plus violet au plus rouge, c’est-à-dire du plus chaud vers le plus froid. Ils sont classés par les lettres O B A F G K M. Le Soleil, par exemple, est de type spectral G.
Mais il ne suffit pas de caractériser une étoile par sa couleur (son type spectral), il faut aussi mesurer sa luminosité.
En fait, pour un type spectral donné, la taille de l’étoile est
corrélée à sa luminosité, la luminosité étant fonction de la surface —
et donc de la taille de l’étoile.
Les étoiles O et B sont bleues à l’œil comme β Orionis ; les étoiles A sont blanches comme α Canis Majoris (Sirius) ou α Lyrae (Vega) ; les étoiles F et G sont jaunes, comme le Soleil ; les étoiles K sont orange comme α Bootis (Arcturus) ; et enfin les étoiles M sont rouges comme α Orionis (Bételgeuse).
On peut définir un indice de couleur, correspondant à la différence de flux photométrique dans deux bandes spectrales dites bandes photométriques (les filtres). Par exemple, le bleu (B) et le visible (V) formeront ensemble l’indice de couleur B-V dont la variation est reliée à la température de surface de l’étoile et donc à son type spectral. Les indices de température les plus utilisés sont le B-V, le R-I et le V-I car ce sont les plus sensibles à la variation de la température.
Vitesse de rotation
La rotation du Soleil a été mise en évidence grâce au déplacement des taches solaires. Pour les autres étoiles, la mesure de cette vitesse de rotation (plus précisément, la vitesse mesurée est la projection de la vitesse de rotation équatoriale sur la ligne de visée), s’obtient par spectroscopie. Elle se traduit par un élargissement des raies spectrales.
Ce mouvement de rotation est un reliquat de leur formation à partir de l’effondrement du nuage de gaz. La vitesse de rotation dépend de leur âge : elle diminue au cours du temps, sous les effets conjugués du vent stellaire et du champ magnétique qui emportent une partie du moment cinétique de l’astre. Cette vitesse dépend également de leur masse et de leur statut d’étoile simple, binaire ou multiple. Une étoile n’étant pas un corps solide (c’est-à-dire rigide), elle est animée d’une rotation différentielle : la vitesse de rotation dépend de la latitude.
Champ Magnétique
Comme le Soleil, les étoiles sont souvent dotées de champs magnétiques. Leur champ magnétique peut avoir une géométrie relativement simple et bien organisée, ressemblant au champ d’un aimant comme le champ magnétique terrestre ; cette géométrie peut être aussi nettement plus complexe et présenter des arches à plus petite échelle. Le champ magnétique du Soleil, par exemple, possède ces deux aspects ; sa composante à grande échelle structure la couronne solaire et est visible lors des éclipses, tandis que sa composante à plus petite échelle est liée aux taches sombres qui maculent sa surface et dans lesquelles les arches magnétiques sont ancrées.
Il est possible de mesurer le champ magnétique des étoiles à travers les perturbations que ce champ induit sur les raies spectrales formées dans l’atmosphère de l’étoile (l’effet Zeeman). La technique tomographique d’imagerie Zeeman-Doppler permet en particulier de déduire la géométrie des arches géantes que le champ magnétique dresse à la surface des étoiles.
Parmi les étoiles magnétiques3, on distingue d’abord les étoiles dites « froides » ou peu massives, dont la température de surface est inférieure à 6 500 K et dont la masse ne dépasse pas 1,5 masses solaires - le Soleil fait donc partie de cette classe. Ces étoiles sont « actives », c’est-à-dire qu’elles sont le siège d’un certain nombre de phénomènes énergétiques liés au champ magnétique, comme par exemple la production d’une couronne, d’un vent (dit vent solaire dans le cas du Soleil) ou d’éruptions. Les taches à la surface du Soleil et des étoiles témoignent également de leur activité ; comme les champs magnétiques, les taches des étoiles peuvent être cartographiées par des méthodes tomographiques. La taille et le nombre de ces taches dépendent de l’activité de l’étoile, elle-même fonction de la vitesse de rotation l’étoile. Le Soleil, qui effectue un tour complet sur lui-même en 25 jours environ, est une étoile ayant une faible activité cylique. Le champ magnétique de ces étoiles est produit par effet dynamo.
Il existe aussi des étoiles chaudes magnétiques. Mais contrairement aux étoiles froides, qui sont toutes magnétiques (à différents degrés), seule une petite fraction (entre 5 et 10 %) des étoiles chaudes (massives) possède un champ magnétique, dont la géométrie est en général assez simple. Ce champ n’est pas produit par effet dynamo ; il constituerait plutôt une empreinte fossile du magnétique interstellaire primordial, capturé par le nuage qui va donner naissance à l’étoile et amplifié lors de la contraction de ce nuage en étoile. De tels champs magnétiques ont été baptisés « champs magnétiques fossiles ».